
Struct in C++

For C++, the only difference between struct and class is that by default in struct the

members are public and in class private.

class Date

{

       int Day, // no access modifier, consequently private

       iMonth,

       Year; 

       Date() { } // error – private constructor is useless

       ………...

};

struct Date

{

       int Day, // no access modifier, consequently public

       iMonth,

       Year; 

       Date() { }

       ………...

};

In practice, however, the struct is used for small classes containing only attributes. Or in

other words – struct in C++ has the same meaning as in C. 



Copy constructor (1)

class Date

{

int Day, iMonth, Year;

public: Date(int, int, int);

    ……………………………….

};

void PrintDate(Date d) 

{

printf("%d-%d-%d\n", d.GetDay(), d.GetMonth(), d.GetYear());

} 

Each class has default copy constructor that copies byte by byte from original object into 

the new object:

Date d1(27, 5, 2019);

Date d2 = d1; // d2 is created by default copy constructor

Date *pd3 = new Date(27, 5, 2019);

Date d4 = *pd3; // d4 is created by copy constructor, pd3 points to the original

PrintDate(d1);  // argument d is created by copy constructor from d1

PrintDate(*pd3); // argument d is created by copy constructor, pd3 points to the original 

PrintDate(Date(27, 5, 2019)); // contructs an object without name

                                                 // this nameless object is the original in creating d



Copy constructor (2)

class Date

{

   int Day;

   char *pMonth = 0;

   int Year;

public:

    Date(int, const char *, int);

    ~Date() { if (pMonth) delete pMonth; }

……………………………………

};

Let:

static Date d1(27, "May", 2019); // global lifetime

Date d2 = d1; // local lifetime

Problem: as the default copy constructor copies attribute by attribute, the pointers 

d1.pMonth and d2.pMonth point to the same memory field. Consequently, when d2 as a 

local variable is deleted, d1 looses its value for attribute pMonth.

To overcome this and similar problems, we have to write our own copy constructor.



Copy constructor (3)

class Date

{

  int Day;

  char *pMonth = 0;

  int Year;

public:

 Date(int, const char *, int);

 ~Date() { delete pMonth; }

Date (const Date &Original) 

{ // overloads the default copy constructor

Day = Original.Day; Year = Original.Year;

                    int n;

pMonth = new char[n = strlen(Original.pMonth) + 1];

strcpy_s(pMonth, n, Original. pMonth);

}

…………………………………………………………………..

};

Date d2 = d1; // When the copy constructor is working, Original is the synonym of d1;

// Day, Year and pMonth are the members of d2.



Pointer this

By default, each class has a member called as this. It is the pointer which points to the 

current object itself. For example:

class Date

{

……………………………………………………………..

Date (const Date &Original)

{ // overloads the default copy constructor

*this = Original; // At first copy everything, then modify

// Default assignment operator (discussed later) is applied

            int n;

pMonth = new char[n = strlen(Original.pMonth) + 1];

strcpy_s(pMonth, n, Original.pMonth);

}

       int GetDay() { return this->Day; }

         // some programmers mark all the methods and variables that are class members

         // with this->. Reason: they want to distinguish the local variables from class

         // members

…………………………………………………………………..

};



Friends (1)

Let us have class Date and the similar to it class Time:

class Time {

  int Hour, Min, Sec;

public:

  Time(int, int, int);

  …………………

};

Let us have also class Timestamp:

class Timestamp {

Date date; // aggregation

Time time;

public:

Timestamp();

~Timestamp();

Timestamp(int d, int mn, int y, int h, int m, int s) : date(d, mn, y), time(h, m, s) { }

void PrintTimestamp() {
       printf("%02d-%d-%d %02d:%02d:%02d\n", date.GetDay(), date.GetMonth(), 

                  date.GetYear(), time.GetHour(), time.GetMinutes(), time.GetSeconds());

       }

};       



Friends (2)

If the author of all these 3 classes is the same programmer, then in class Timestamp he 

would like to access the members of  Date and Time directly. In C++ it is possible if 

classes Time and Date are declared as friend classes of Timestamp :

class Time {

   …………………

   friend class Timestamp;

};

class Date {

   …………………

   friend class Timestamp;

};

Now:

class Timestamp {

  ……………………

void PrintTimestamp() { // accessor functions not needed
       printf("%02d-%d-%d %02d:%02d:%02d\n", date. Day, date.iMonth, 

                  date. Year, time. Hour, time.Min, time. Sec);

       }

};       



Friends (3)

If class A declares that class B is its friend, class B has free access to all the members of

class A. But it does not mean that A can also access non-public members of B. Here classes 

Time and Date allow class Timestamp to work with its private attributes. As Timestamp has 

not declared friendship with Time and Date, those classes have no free access to Timestamp

private and protected members. 

Friendship is not inherited. Also, if B declares that C is its friend, C has access to non-public 

members of B but not to non-public members of A.

A class may also declare that a function out of classes is its friend. Example:

class Time; // put it at the beginning of file Date.h to explain the compiler 

                   // the meaning of word Time

class Date {

……………

friend void PrintTimestamp(Date *, Time *); 

};

class Date; // put it at the beginning of file Time.h to explain the compiler 

                   // the meaning of word Date

class Time {

……………

friend void PrintTimestamp(Date *, Time *);

};



Friends (4)

Now function PrintTimestamp has access to all the members of classes Date and Time:

void PrintTimestamp(Date *pd, Time *pt)

{

   printf("%02d-%d-%d %02d:%02d:%02d\n", pd->Day, pd->iMonth, pd->Year,

                                                                            pt->Hour, pt->Min, pt->Sec);

}

Usage:

Date d(8, 3, 2019);

Time t(11, 3, 56);

PrintTimestamp(&d, &t);



Operator overloading (1)

class complex

{

  public:  double Re, Im; // real part and imaginary part

 complex(double d1 = 0, double d2 = 0) { Re = d1;  Im = d2; }

 complex operator+(complex &c)

  { return complex (Re + c.Re, Im + c.Im); }

 int operator==(complex &c)

  { return Re == c.Re && Im == c.Im ? 1 : 0; }

 complex operator!() { return complex(Re, -Im); }

 ……………………………………..

}; 

complex x(5, 6), y(1,2); // x = 5 + j6, y = 1 + j2

complex z1 = x + y; // Actually z1 = x.operator+(y);  we get z1 = 6 + j8.

// When the operator method is working, c is the synonym of y; Re and

// Im are the members of x. The return value is a new nameless 

// complex number. From it the default copy constructor creates z1.

if (x == y) // actually x.operator==(y)

   printf("Equal\n");

complex z2 = !x;  // actually z2 = x.operator!(); we get z2 = 5 - j6 (conjugate of x)



Operator overloading (2)

Alternative solution:

class complex {

public:  double Re, Im;

complex(double d1 = 0, double d2 = 0) { Re = d1;  Im = d2; }

friend complex operator+(complex &, complex &);

friend int operator==(complex &, complex &);

friend complex operator!(complex &);

……………………………………..

};

complex operator+(complex &a, complex &b) {

return complex(a.Re + b.Re, a.Im + b.Im);

}

int operator==(complex &a, complex &b) {

return (a.Re == b.Re && a.Im == b.Im) ? 1 : 0;

}

complex operator!(complex &a) {

return complex(a.Re, -a.Im);

}



Operator overloading (3)

complex x(5, 6), y(1,2); // x = 5 + j6, y = 1 + j2

complex z1 = x + y; // actually z1 = operator+(x, y); we get z1 = 6 + j8

                                // complex operator+(complex &a, complex &b) {

                                // return complex(a.Re + b.Re, a.Im + b.Im); }

                                //

                                // When the operator method is working, a is the synonym of

                                // x and b is the synonym of y. The return value is a new

                                // nameless complex number. From it the default copy

                                // constructor creates z1.

if (x == y) // actually operator==(x, y)

printf("Equal\n");

complex z2 = !x; // actually z2 = operator!(x); we get z2 = 5 - j6



Operator overloading (4)

It is not possible to:

1. Introduce new operators not specified in C++ standard.

2. Change the priorities.

3. Overload the sizeof operator, the scope resolution operator (::), the conditional operator 

(?:) and the member selection operator (.).

Overloading of operators like new, delete, function call ( ( ) ), array element reference ( [ ] ),

comma (,), assignment (=) and type cast may be tricky.

Let us take class Date:

Date d1(20, 10, 2019); // constructor called

Date d2 = d1; // default copy constructor called

Date d3; // constructor without arguments called

d3 = d1; // here we need operator overloading function for assignment

Each class has default assignment overloading function providing byte-by-byte copy. Rather 

often it is not acceptable and we have to write our own assignment overloading function 

replacing the default one.



Operator overloading (5)

Let us have:

class Date {

   int Day;

   char *pMonth = 0;

   int Year;

public:

    Date() { }

    Date(int, const char *, int);

    ~Date() { if (pMonth) delete pMonth; }

……………………………………

};

Let:

Date *pd1 = new Date(8, "March", 2019);

Date *pd2 = new Date; // constructor without arguments called

*pd2 = *pd1; // default assignment overloading function called

…………….

delete pd1;

Problem: as the default assignment overloading function copies attribute by attribute, 

two objects of class Date share common memory field for month.. Consequently, 

deleting one of them corrupts the other.



Operator overloading (6)

Date &Date::operator =(const Date &Right) // here & - specifies the reference type

{ 

  if (this == &Right) // here & - address operator

  return *this; // necessary for expressions like d1 = *pd where pd points to d1

   Day = Right.Day;  Year = Right.Year;

   if (pMonth) 

        delete pMonth; 

    int n;

    pMonth = new char[n = strlen(Right.pMonth) + 1];

    strcpy_s(pMonth, n, Right. pMonth);

    return *this;

}

d1 = d2; // actually d1.operator=(d2);

i.e. this points to d1 and Right is the synonym of d2

d1 = d2 = d3; // d1 = d2.operator=(d3) → d1.operator=(d2.operator=(d3));

Therefore void Date::operator=(Date &Right) {…} does  not work – the operator=

function  must return the object.



Operator overloading (7)
class Date {

private: int Day, Year;

 char *pMonth = 0, *pText = 0;

public: ………………………

                operator char *()  // operator function to overload type casting

                                               // no return value, the word "operator" is followed

// by the new type specifier

{

     pText = new char[64];

sprintf_s(pText, 64, "%d %s %d", Day, pMonth, Year);

return pText;

}

};

Date d (27, "May", 2020); 

if (strcmp(d, "28 June 2020")) {

         // actually the operator char *() function associated with object d is called

printf(“Do not match\n”);

}

printf("%s\n", (char *)d);



Static members(1)

class Base

{

public: static int Counter; // declaration, but definition for initialization is also needed

 Base() { Counter++; }

 ~Base() { Counter--; }

};

int Base::Counter = 10; // definition, must be outside of functions and class declarations

                                       // applicable to public, protected and private members

Base b;

printf("%d\n", b.Counter);  // not recommended

printf("%d\n", Base:: Counter); // correct

Static attributes get memory only once. They are shared between all the objects of that

class and also objects of classes derived from that class. The static attributes exist even when 

there are no any objects defined yet.

class Derived : public Base {………………..};

Derived d;

printf("%d\n", d.Counter); // not recommended

printf("%d\n", Derived::Counter); // correct

Here Counter presents the current total number of objects of class Base plus objects of class 

Derived.



Static members(2)

class Base

{

private: static int Counter; 

public:  Base() {Counter++; }

 ~Base() {Counter--; }

 static int GetCounter() { return Counter; }

};

int Base::Counter=0; // although private

class Derived : public Base {………………..};

Derived d;

printf("%d\n", d.GetCounter()); // not recommended

printf("%d\n", Derived::GetCounter()); // correct

printf("%d\n", Base::GetCounter()); // correct

Static functions of a class cannot operate with non-static members of that class. They can

be called even when there are no any objects defined yet.

All the non-static functions have access to any of the static members, the restrictions

depend only on the access specifiers (public, private, protected).



Constant members

The value of static or non-static value attribute may be declared as constant. In that 

case they must be initialized right in the declaration. Later changes, of course, are not 

possible.

Example:

class Date

{

 ……………….

 const char MonthNames[12][4] = { 

                                                             "Jan", "Feb", "Mar", "Apr", "May", "Jun", 

                                                             "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

                                                         };

 ……………….

};



Constant objects (1)

Let us have

class Test

{

private:

    int Value;

    int Counter; 

public:

   Test(int i) { Value = i; Counter = 0; }

   void SetValue(int i) { Value = i; }

   int GetValue() { return Value; }

};

and

const Test *pt = new Test(1);

In that case:

pt->SetValue(5); // error: the object and consequently its attributes are constants

int i = pt->GetValue(); // also error!

If an object is constant, it is not possible to call methods associated with it.



Constant objects (2)

Solution:

int GetValue() const { return Value; } // const member function

Now:

const Test *pt = new Test(1);

int i = pt->GetValue(); // works

But the const member function cannot so simply change the state of object:

int GetValue() const { Counter++; return Value; } // compile error

To solve the problem cast the this pointer to non-const:

int GetValue() const

{

  ((Test *)this)->Counter++; 

   return Value;

 }

or better

int GetValue() const

{

  (const_cast<Test *>(this))->Counter++; 

   return Value;

 }



Casts (1)

The traditional explicit C cast (new type) expression is still in use:

double d = 5.6;

int i;

i = (int)d;

C++ has 4 new casting operators:

static_cast <new type> (expression)

dynamic_cast <new type> (expression)

reinterpret_cast <new type> (expression)

const_cast <new type> (expression)

Turn attention that the expression is always in parentheses.

The C-style cast is suitable for conversions between primitive data types. For conversions 

between pointers the C++ new casting operators are preferred.

Generally, the static, reinterpret ja const casts do the same as the C-style cast but allow 

more control over how the conversion should be performed. They are also easier to find 

in the source code.

Dynamic cast correctness is checked during run-time.



Casts (2)

The static_cast checks a bit more that C-style cast and is therefore more secure.

double d = 5.6;

int i;

i = static_cast<int>(d) // the same as i = (int)d;

class Base { ….. };

class Derived : public Base { ….. };

Derived *pd = new Derived;

Base *pb = pd; // implicit cast

pd = pb; // compile error, implicit cast not allowed

pd = (Derived *)pb; // legal, but also a possible source of run-time errors

pd = static_cast<Derived *>(pb); // legal and possible source of run-time errors

But

class Class1 {……};

class Class2 {……};

Class1 *pc1 = new Class1;

Class2 *pc2 = new Class2;

pc2 = (Class2 *)pc1; // legal, but also a source of run-time errors

pc2 = static_cast<Class2 *>(pc1); // compile error, static cast not allowed

The static_cast checks whether the pointer and pointee data types are compatible.



Casts (3)

The reinterpret_cast checks nothing and allows to cast a pointer to any other type of 

pointer (exactly as C-style cast):

class Class1 {……};

class Class2 {……};

Class1 *pc1 = new Class1;

Class2 *pc2 = new Class2;

pc2 = (Class2 *)pc1; // legal, but also a source of run-time errors

pc2 = reinterpret_cast<Class2 *>(pc1); // legal, but also a source of run-time errors

Using the reinterpret_cast instead of C-style cast the programmer emphasizes that he 

knows about the possible risks. If the program has crashed, places where reinterpret_cast 

(they are easy to find) is used are good start points for searching the bugs.



Casts (4)

The const_cast is used to convert a constant to non-constant. Example:

void alien (char *); // a third-party function we have to use

void fun (const char *p)

{  // our function, by specification its argument must be const char *

  ……………………

  alien(p); // compile error

  alien((char *)p); // legal, but may crash if p points to a string constant

  alien(const_cast<char *>(p)); // legal , but may crash if p points to a string constant

  ……………………..

}

fun("I am John"); // crashes when function alien tries to change this text

Generally, if you try to change a value declared as const, the behavior is undefined but 

mostly the program crashes.

char *pc = new char[10];

strcpy(pc, "I am John");

const char *cpc = pc;

fun(cpc); // works because cpc points to memory field that is not constant



Casts (5)

The const_cast is safer because it can adjust the qualifier but not change the underlying 

type:

class Class1 {……};

class Class2 {……};

Class1 c1;

const Class1 *pc1 = &c1;

Class2 *pc2 = const_cast<Class2 *>(pc1); // compile error, pc1 is from different type



Casts (6)

The dynamic_cast provides pointers run-time check (not compile-time as the other casts) 

on casts within an inheritance hierarchy. 

class Base

{

  virtual void base_fun(); // the hierarchy must contain at least one virtual method

   ………………..

};

class Derived : public Base { ….. };

Derived *pd;

Base *pb = new Base;

pd = static_cast<Derived *>(pb); // legal and possible source of run-time errors

pd = dynamic_cast<Derived *>(pb); // no compile error but when the program

               // runs, the result is null-pointer

if (!pd)

{

   ………………….

}

pb = dynamic_cast<Base *>(pd); // legal, no any errorrs

If the hierarchy does not contain virtual functions, a compile error will follow.



New variable types (1)

In C any variable of any type is interpreted as false if its value is zero and as true if its

value is not zero. This is still correct in C++.

To improve the readability of code, preprocessor definitions like 

#define TRUE  1

#define FALSE 0

are used. In C++ there is an additional built-in type: bool

bool b1 = true, b2 = false;

Actually, b1 is stored as integer 1 and b2 as integer 0. Boolean variables are implicitly 

(i.e. automatically) converted into integers and vice versa:

int i = b1; // i is now 1

b1 = 10; // b1 is now true

Examples of usage:

while (b1 == true) {……}

while (b1) {……}

while (!b2) {……}

bool fun()

{ …..

return true; 

}



New variable types (2)

Pointer that points to nothing has value 0:

char *p = 0;

Rather often:

#define NULL 0

char *p = NULL; 

void fun(char *p) {……….}

void fun(int i) {……….}

Problem:

fun(0); // as 0 is an integer, always the second function is called

Solution:

fun(nullptr); // the first function is called

fun(0); // the second function is called

nullptr is introduced in C++ v 11. Advised to use instead 0 when working with pointers.



Namespaces (1)

As in most cases a software product includes modules developed by different programmers, 

it is almost impossible to ensure the uniqueness of classnames. To overcome this difficulty, 

namespaces were introduced:

namespace  namespace_name

{

body

} // semicolon not needed

The body may include class declarations, global variable declarations, function declarations, 

etc. A namespace can be defined in several parts spread over multiple files. Example:

namespace TimeDate // file *.h

{

class Date { …….. };

class Time { …….. };

class Timestamp { …….. };

}

namespace TimeDate // file *.cpp

{

Date::Date(int d, int, m, int y) {…………. }

………………………………………………

}



Namespaces (2)

If we do not specify a namespace, our code is still in a namespace: it is the anonymous 

global namespace.

Namespaces may be nested: a namespace declaration may contain other namespaces.

The complete names of classes, functions and variables include also the complete list of 

namespaces separated by scope resolution operator (::), for example TimeDate::Date or 

Coursework::TimeDate::Timestamp. 

namespace TimeDate

{

………………………………………………

// In this code section for classes, functions and variables declared in namespace TimeDate

// the complete name is not needed.

// For classes, functions and variables not declared in namespace TimeDate the complete

// name is necessary.

// For classes, functions and variables declared in anonymus namespace the complete

// name starts with ::

}

The C++ standard classes are from namespace std.



Namespaces (3)
Example:

int main()

{

string abc("ABC"); // error 

// our code is in anonymous namespace, but C++ standard class

// string is from namespace std.

std::string def("DEF");  //correct

……………..

}

To facilitate the code writing put directive using to the beginning of your source code:

using namespace namespace_name;

or 

using namespace_name::class_name;

Example:

using namespace std; 

// if string is the only standard class you need, you may write using std::string

int main()

{

string abc("ABC"); // now correct

…………………….

}



C++ standard library

Standard classes for:

• Input and output

• String processing

• Exception handling

• Containers (vectors, linked lists, etc.)

• Algorithms for container handling

• Clocks and timers

• Multithreading

• Threads synchronization

• Random numbers

• Complex numbers

• Internationalization

• Regular expressions



I/O streams (1)

To stdout (command prompt window): printf, wprintf

printf("%d\n", i);

wprintf (L"%d\n", i); 

To a stream: fprintf, fwprintf

fprintf(stderr, "%s\n", "Error");

fprintf(stdout, "%s\n", "Error"); // the same as printf("%s\n", "Error");

FILE *pFile = fopen("c:\\temp\\data.txt", "wt+"); 

fwprintf(pFile, L"%d\n", i);

To a memory field: sprintf, swprintf, sprintf_s, swprintf_s

char pc[20];

sprintf(pc, "%d\n", i);

sprintf_s(pc, 20, "%d\n", i);

wchar_t pwc[40];

swprintf(pwc, L"%d\n", i);

swprintf_s(pwc, 40, L"%d\n", i);

If the buffer is too short, sprintf_s and swprintf_s return empty string, but sprintf and 

swprintf crash.



I/O streams (2)

#include <iostream> // obligatory

#include <iomanip> // may be needed for manipulators

cin – global object of class istream, reads data from keyboard (more officially, from 

input console).

cout – global object of class ostream, writes data to the command prompt window 

(more officially, to output console).

cerr – global object of class ostream, writes data to the error console (mostly the same 

as output console).

Class istream has operator overloading function operator>>. Class ostream has operator 

overloading function operator<< . Those two functions are for formatted I/O, thus 

replacing scanf and printf. The full description of istream and ostream is on pages:

http://www.cplusplus.com/reference/iostream/

http://www.cplusplus.com/reference/istream/istream/

http://www.cplusplus.com/reference/ostream/ostream/ 

Examples:

int i = 10, j = 20; double d = 3.14159; char *p = "abc";

cout << i; // printf("%d", i);

cout << i << ' ' << d << ' ' << p << endl; // printf("%d %lg %s\n", i, d, p);

// possible because the return value of operator<< is ostream& 

                               // endl means line feed

http://www.cplusplus.com/reference/iostream/
http://www.cplusplus.com/reference/istream/istream/
http://www.cplusplus.com/reference/ostream/ostream/


I/O streams (3)

int i = 10, j = 20; 

double d = 3.14159;

cout << "i = " << i << " j = " << j << endl; // printf("i = %d j = %d\n", i, j);

cerr << "Unable to open file" << endl; // fprintf(stderr, "Unable to open file\n");

char buf[100];

cout << "Type your name" << endl;

cin >> buf;

cin and cout support basic types like char, char *, int, long int, double, etc. For more 

sophisticated formatting use manipulators. Some examples of them:

To get integers in hexadecimal format use hex:

cout << hex << i << endl; // printf("%x\n", i);

The next integers will be also printed as hexadecimal numbers. To return to decimal use 

manipulator dec:

cout << dec << j << endl; // printf("%d\n", j);

To set the output field width for numerical data use setw:

cout << setw(6) << i << ' ' << j << endl; // printf("%6d %d\n", i, j); 

To set the number of decimal places use  setprecision: 

cout << setprecision(4) << d << endl; // printf("%.4lg\n", d); we get 3.142



I/O streams (4)

To specify the character used for padding use setfill:

int i = 255;

cout << setfill('0') << setw(6) << i << endl; // printf("%06d\n", i); 

Class ostream has also two functions: write to print a block of data and put to print just 

one character:

char *p;

cout.write(p, 2); // prints the first 2 characters, no formatting

cout.put(*p); // prints the first character , no formatting

Input with cin has a problem: whitespace is considered as the end of token: 

char buf[100];

cout << "Type your name" << endl;

cin >> buf; // types John Smith

cout << buf << endl; // prints John

Solution:

char buf1[100], buf2[100];

cout << "Type your name" << endl;

cin >> buf1 >> buf2;

cout << buf1 << ' ' << buf2;



I/O streams (5)
There is another (and better) solution – use istream function get():

char buf[100];

cout << "Type your name" << endl;

cin.get(buf, 100); // types John Smith

cout << buf << endl; // prints John Smith

Generally:

char c, buf[256], delim = ' ';

cin.get(c); // reads the typed character, reading starts when the user has pressed ENTER

if (cin.peek() != EOF) { // \'n' stays in cin, we need to get rid of it. 

    cin.get(c);                   // with peek() we can check wether the cin is empty

                                        // peek() returns the first character in cin but does not pop it out

                                        // if the cin is empty, peek() returns constant EOF

}

cin.get(buf, sizeof buf); // reads max (sizeof buf – 1) characters, stores the result as C string

                                       // reading starts when the user has pressed ENTER

if (cin.peek() != EOF) { // \'n' stays in cin, we need to get rid of it. 

    cin.get(c);                   

}

cin.get(buf, sizeof buf, delim); // as previous, but reads until delimiter, here until space 

do { // delimiter and following to it characters stay in cin

cin.get(c);

} while (c != '\n');



I/O streams (6)

It is more comfortable to use istream function getline():

cin.getline(buf, sizeof buf); // Reads max (sizeof buf – 1) characters, stores the result as C

// string. Reading starts when the user has pressed ENTER.  '\n' is removed from cin.

cin.get(buf, sizeof buf, delim); // As previous, but reads until delimiter, here until space. 

// Delimiter is removed from cin but the following to it characters stay.

For our own classes we may write our own operator>> and operator<< functions. Example:

ostream &operator<<(ostream &ostr, const Date &d)

{ // friend, out of classes

  const char MonthNames[12][12] = { "January", "February", "March", "April", "May",

                                                             "June", "July", "August",

                                                             "September", "October", "November", "December" };

  ostr << d.Day << ' ' << MonthNames[d.iMonth - 1] << ' ' << d.Year << endl;

  return ostr;

}

Date d(11, 3, 2019);

cout << d << endl; // prints 11 March 2019

To use Unicode and wchar_t, use wcout and wcin, for example:

int i = 10, j = 20; 

wcout << L"i = " << i << L" j = " << j << endl; // printf(L"i = %d j = %d\n", i, j);



I/O streams (7)

For input into files and output from files:

#include <fstream> // http://www.cplusplus.com/reference/fstream/fstream/ 

fstream File; // File is an object of class fstream

To open file use method open:

open(file_name_string, mode)

Filename: const char *, in Windows also const wchar_t *.

fstream static members for modes:

1. app - set the stream position indicator to the end of stream before each output operation.

2. ate - set the stream position indicator to the end of stream on opening.

3. binary - consider the stream as binary rather than text. 

4. in - allow input operations on the stream.

5. out - allow output operations on the stream.

6. trunc – discard the current content, assume that on opening the file is empty.

To join the modes use bitwise OR. Example:

File.open("c:\\temp\\data.bin", fstream::out | fstream::in | fstream::binary);

To check the success call right after opening method good(). It returns 0 (failed) or 1 

(success).

To close the file use method close().

http://www.cplusplus.com/reference/fstream/fstream/


I/O streams (8)

To operate with text files, fstream has overloaded functions operator>> and operator<< that 

work like the corresponding functions of ostream and istream. For example:

fstream File;

File.open("C:\\Temp\\data.txt", fstream::out | fstream::in | fstream::trunc); // not binary!

if (!File.good())

{

       return;

}

int arr1[10], arr2[10];

for (int i = 0; i < 10; i++)

     arr1[i] = i; 

for (int i = 0; i < 10; i++)

     File << arr1[i] << ' '; // converts into text, in file 0 1 2 3 4 5 6 7 8 9

File.seekg(ios_base::beg); // shifts the position indicator to the beginning, see the next slide

for (int i = 0; i < 10; i++)

     File >> arr2[i]; // converts into integers

for (int i = 0; i < 10; i++)

     cout << arr2[i]; // prints 0123456789

File.close();



I/O streams (9)

For reading from binary files (i.e. without formatting) use method read().

fstream_object_name.read(pointer_to_buffer, number_of_bytes_to_read);

To check the success use method good(). Method gcount() returns the number of bytes that 

were actually read. Example:

int arr[100];

fstream File;

File.open("C:\\Temp\\data.bin", fstream::in | fstream::binary);

File.read(arr, 100 * sizeof(int));

if (!File.good())

    cout << "Error, only " << File.gcount() << " bytes were read!" << endl;

To shift the reading position indicator use method seekg():

int n;

File.seekg(ios_base::beg + n); // n bytes from the beginning

File.seekg(ios_base::end - n); // n bytes before the end

File.seekg(ios_base::cur + n); // n bytes after the current position

File.seekg(ios_base::cur - n); // n bytes before the current position

n = File.tellg(); // returns the current position



I/O streams (10)

To read from text or binary files byte by byte use method get(). Example:

int arr[100];

fstream File;

File.open("C:\\Temp\\data.bin", fstream::in | fstream::binary);

for (int i = 0; File.good() && i < 100 * sizeof(int); i++) {

     *((char *)arr + i) = File.get();

}

Suppose our text file consists of words separated by space. When a word is retrieved, we want 

to analyze it immediately:

char buf[1024];

fstream File;

File.open("C:\\Temp\\data.txt", fstream::in);

while(1) {

   for (int i = 0;  i < 1024; i++)  {

          if (File.peek() == ' ') // see what is there but do not read out

                break; // jump to analyze the current word

          else

               *(arr + i) = File.get(); // read the next character of the current word

     }

   ………………………………….

}



I/O streams (11)
If the text in file is divided into rows separated by ´\n', we may use method getline():

char buf[256], delim = ' ';

File.getline(buf, sizeof buf); // reads max (sizeof buf – 1) characters, stores the result as C

                                                // string. '\n' is discarded

File.getline(buf, sizeof buf, delim); // here '\n' is replaced by another delimiter

Also, the reading stops when the end of file is reached. Example:

while (true)

{

    File.getline(buf, sizeof buf);

    ……………………………….  // process the retrieved text

    if (File.eof())

    {

           break;  // end of file is true, stop processing

     }

}

You can also check the reading result with methods good() and fail():

File.getline(buf, sizeof buf);

if (File.fail())

{  // the buffer is full but '\n' or other delimiter was not found

 …………………………..

}



I/O streams (12)

For writing into binary files (i.e. without formatting) use method write.

fstream_object_name.write(pointer_to_data_write, number_of_bytes_to_write);

To check the success use method good(). Example:

int arr[100];

fstream File;

File.open("C:\\Temp\\data.bin", fstream::out | fstream::binary);

File.write((char *)arr, 100 * sizeof(int));

if (!File.good())

    cout << "Error, failed to write!" << endl;

To shift the writing position inidicator use method seekp() (similar to seekg()). To get the 

current location use method tellp().

To write byte by byte use method put():

for (int i = 0;  i < sizeof(int) * 100;  i++)

     File.put(*((char *)arr + i));

The data to write are accumulated in an inner buffer and will be actually written when the 

buffer is full, when the stream is closed or goes out of scope. Method flush() explicitly tells 

the stream to write into file immediately:

File.flush();



C++ standard exceptions (1)

#include <exception> // see http://www.cplusplus.com/reference/exception/exception/ 

try {

   ……………………… // may throw an object of class exception

}

catch(const exception &e) {

  ………………………….. // processing the exception

}

Example:

try {

   int n;

   cin >> n;

   if (n <= 0)

       throw exception("Wrong length"); // create exception object, specify the error message

    …………………………………

}

 catch(const exception &e) {

      cout  << e.what() << endl; // what() returns the error message

      return;

}

http://www.cplusplus.com/reference/exception/exception/


C++ standard exceptions (2)

We may derive from the standard exception class our own exception, adding attributes that 

describe the abnormal situation. C++ standard presents also some additional classes derived 

from exception, for example invalid_argument, out_of_range, system_error, overflow_error, 

underflow_error, etc. Those classes do not introduce new members additional to members 

inherited from exception. Throwing of exceptions of different classes simply help to 

ascertain the reason of failure without analyzing the text  in error message. Example:

try {

 ………………………………… // some code

 }

 catch(const invalid_argument &e1) {

 ………………………………… // do something

}

 catch(const out_of_range &e2) {

 ………………………………… // do something;

}

 catch(const exception &e3) { // all the other possible exception types

………………………………… // do something

}



C++ standard exceptions (3)

The C++ standard allows to add to function header the list of exceptions that this 

function may throw, for example:

void fun(void *p, int i) throw (out_of_range, invalid_argument)

{ // throw list informs the user about exceptions the function may throw

if (i < 0)

      throw out_of_range("Failure, index is negative");

if (!p) 

       throw invalid_argument ("Failure, no object");

………………………..

}

The throw list is not compulsory. If present, it must be included also into the prototype:

void fun(void *, int) throw (out_of_range, invalid_argument);

To emphasize that the current function does not throw exceptions, you may replace the 

throw list with keyword noexcept, for example:

void fun() noexcept;

In Visual Studio the throw list may cause compiler warnings. To suppress them write at 

the beginning of your file:

#pragma warning( disable : 4290 )



C++ strings (1)

#include <string> // see http://www.cplusplus.com/reference/string/ 

Constructors:

string s1("abc"), // s1 contains characters a, b and c

          s2("abc", 2), // s2 contains characters a and b (the first two)

          s3(5, 'a'), // s3 contains 5 characters 'a'

          s4(s1), // s4 is identical with s1

s5(s1, 1), // s5 contains characters b and c (from position 1)

          s6 = s1,  // copy constructor, s6 is also "abc"

s7;  // empty string, the alternative is s7("");

Examples with memory allocation:

string *ps1 = new string("abc"), // ps1 points to string that contains characters a, b and c

          *ps2 = new string(*ps1), // ps2 points to string that contains characters a, b and c

*ps3 = new string; // ps3 points to empty string, alternative is new string("")

In case of Unicode use wstring:

wstring ws(L"abc"), pws = new wstring(5, L'a');

http://www.cplusplus.com/reference/string/


C++ strings (2)
Get string in C format:

string s1("abc");

const char *p = s1.c_str();

However, if we later change the string s1, p may start to point to a wrong place.  In case of 

Unicode:

wstring ws1(L"abc");

const wchar_t *p = ws1.c_str();

Input and output:

string s1("abc");

cout << s1<< endl; 

cout << s1.c_str() << endl; 

wstring ws1(L"abc");

wcout << ws1 << endl;

wcout <<  ws1.c_str() << endl;

string s2;

cin >> s2; // reads until space 

std::getline(cin, s2); // reads until ENTER , not a member of a class

wstring ws2;

wcin >>  ws2;

std::getline (wcin, ws2);



C++ strings (3)

Prototypes of functions for conversions from string:

int std::stoi(string_or_wstring); // but stou returning unsigned int is not defined

long int std::stol(string_or_wstring);

long long int std::stoll(string_or_wstring);

unsigned long int std::stoul(string_or_wstring);

unsigned long long int std::stoull(string_or_wstring);

float std::stof(string_or_wstring);

double std::stod(string_or_wstring);

In case of failure those functions throw invalid_argument or out_of_range exception. 

Example:

cout << "Type the length of array" << endl;

string s;

int n;

getline(cin, s);

try {

     n = std::stoi(s);

}

catch (const exception &e) { // absolutely needed, the human operator may hit a wrong key

      cout << "Wrong" << endl;

}



C++ strings (4)

Prototypes of functions for conversions to string:

string std::to_string(argument);

wstring std::to_wstring(argument);

The argument may be any integer, float or double.

Capacity:

string s1("abc");

int n = s1.length(); // number of characters in string

if (s1.empty())

{……………………. } // true if no characters in string

s1.clear(); // s1 is now empty string

Access:

string s1("abc");

char c1 = s1.at(0); // c1 gets value 'a'. If index is out of scope, throws out_of_range exeption

char c2 = s1[0]; // c2 gets value 'a'. If index is out of scope, the behavior is undefined

s1[0] = 'x'; // s1 is now "xbc"

s1[3] = 'y'; // error, corrupts memory

char c3 = s1.front(); // the first character

char c4 = s1.back(); // the last character



C++ strings (5)

Arithmetics:

string s3 = s1 + s2; // s3 is "abcdef"

s3 += s1; // s6 is now "abcdefabc"

s1 += "y"; // get "abcy", "y" is automatically converted to object of class string

Comparisons:

if (s1 == s2) // also !=, >, <,  >=, <=

{……………………}

Example:

string name;

if (name != "John")  // automatically converts C string constant to string object

    cout << "Unknown person " << name << endl;

Another option is to use function compare:

int i = s1.compare(s2);

if (i == 0)

    cout << "s1 and s2 are identical" << endl;

else if (i < 0)

    cout << "s1 is less than s2" << endl;

else

    cout << "s1 is greater that s2" << endl;



C++ strings (6)
Find:

int position = find(character_to_find, position_to_start_search);

int position = find(pointer_to_C_string_to_find, position_to_start_search);

int position = find(reference_to_string_to_find, position_to_start_search);

If nothing was found, the return value is string::npos. Examples:

string s("abcdef"), s1 = string("de");

const char *pBuf = "cd";

cout << s.find('e', 0) << endl; // prints 4

cout << s.find(pBuf, 0) << endl; // prints 2

cout << s.find(s1, 0) << endl; // prints 3

if (s.find("klm", 0) == string::npos)

    cout << "not found" << endl;

Function find is to search the first occurrence. With function rfind we may get the last 

occurrence.

int position = find_first_of(pointer_to_C_string_of_characters_to_find,

                                            position_to_start_search);

int position = find_first_not_of(pointer_to_C_string_of_characters_to_find,

                                                   position_to_start_search);

string s("ka3djvn5po9gn");

cout << s.find_first_of("0123456789", 0) << endl; // prints 2 – the position of the first digit

cout << s.find_first_not_of("0123456789", 0) << endl; // prints 0 – the first that is not digit



C++ strings (7)

Copy the contents into buffer:

copy(pointer_to_destination_buffer, number_of_bytes_to_copy, 

         position_of_the first_character_to_copy);

Example:

string s("abc");

char buf[10];

s.copy(buf, 2, 0);

buf[2] = 0; // to get a C string, we have to append the terminating zero ourselves

cout << buf << endl; // prints "ab"

Cut a section:

substr(position_of_the_first_character, length);

returns a string consisting of the specified section of original string. 

Example:

string name; // first name, middle name, last name like John Edward Smith

int n1 = name.find(' ', 0);

int n2 = name.find(' ', n1 +1);

cout << "The middle name is " << name.substr(n1, n2 – n1) << endl;



C++ strings (8)

Insert:

insert(position_to_insert, reference_to_string_to_insert);

insert(position_to_insert, pointer_to_C_string_to_insert);

The additional characters will be inserted right before the indicated position. Example:

string name("John Smith");

name.insert(5, "Edward ");

cout << "The complete name is " << name << endl; // prints John Edward Smith

Replace:

replace(position_to_start_replacing, number_of_characters_to_replace,

             reference_to_string_that_replaces);

replace(position_to_insert, position_to_start_replacing, number_of_characters_to_replace,

             pointer_to_C_string_that_replaces);

The number of characters that replace the specified section may be any. Examples:

string name("John Edward Smith");

name.replace(5, 7, ""); 

cout << name << endl; // prints John Smith

name.replace(5, 0, "Edward "); 

cout << name << endl; // prints John Edward Smith



C++ strings (9)

Erase:

erase(position_to_start_erasing, number_of_characters_to_erase);

Example:

string name("John Edward Smith");

name.erase(5, 7); 

cout << name << endl; // prints "John Smith"



String streams (1)

#include<sstream> // see http://www.cplusplus.com/reference/sstream/stringstream/ 

String output streams format data exactly as ordinary output streams. But instead of 

immediate output they store the formatted data in a string allowing to output them later.

Example:

stringstream sout; // not a predefined object

int nError;

………………………………….

sout << "Failure, error is " << nError << endl; // resulting string is stored in sout

sout << "Press ESC to continue, ENTER to break" << endl; 

                                                                          // appended to the contents of sout

Thus, with string stream we can collect a longer text. To get the string stored in sout use 

method str(), for example:

cout << sout.str(); // prints the result

Method str() with argument of type string replaces the current contents of sout:

string name("John Smith");

sout.str(name); // sout contains only text "John Smith"

sout.str(""); // clears the contents, the argument is implicitly converted to string object

http://www.cplusplus.com/reference/sstream/stringstream/


String streams (2)

String input streams are useful for parsing. Example:

void fun(string name) // name like "John Smith"

{ 

string first_name ="", last_name = "";

stringstream name_stream(name);

name_stream >> first_name >> last_name; 

// now first_name is "John", last_name is "Smith"

………………………………

                // if the last name is not present, last_name remains empty

}


	Slide 1: Struct in C++
	Slide 2: Copy constructor (1)
	Slide 3: Copy constructor (2)
	Slide 4: Copy constructor (3)
	Slide 5: Pointer this
	Slide 6: Friends (1)
	Slide 7: Friends (2)
	Slide 8: Friends (3)
	Slide 9: Friends (4)
	Slide 10: Operator overloading (1)
	Slide 11: Operator overloading (2)
	Slide 12: Operator overloading (3)
	Slide 13: Operator overloading (4)
	Slide 14: Operator overloading (5)
	Slide 15: Operator overloading (6)
	Slide 16: Operator overloading (7)
	Slide 17: Static members(1)
	Slide 18: Static members(2)
	Slide 19: Constant members
	Slide 20: Constant objects (1)
	Slide 21: Constant objects (2)
	Slide 22: Casts (1)
	Slide 23: Casts (2)
	Slide 24: Casts (3)
	Slide 25: Casts (4)
	Slide 26: Casts (5)
	Slide 27: Casts (6)
	Slide 28: New variable types (1)
	Slide 29: New variable types (2)
	Slide 30: Namespaces (1)
	Slide 31: Namespaces (2)
	Slide 32: Namespaces (3)
	Slide 33: C++ standard library
	Slide 34: I/O streams (1)
	Slide 35: I/O streams (2)
	Slide 36: I/O streams (3)
	Slide 37: I/O streams (4)
	Slide 38: I/O streams (5)
	Slide 39: I/O streams (6)
	Slide 40: I/O streams (7)
	Slide 41: I/O streams (8)
	Slide 42: I/O streams (9)
	Slide 43: I/O streams (10)
	Slide 44: I/O streams (11)
	Slide 45: I/O streams (12)
	Slide 46: C++ standard exceptions (1)
	Slide 47: C++ standard exceptions (2)
	Slide 48: C++ standard exceptions (3)
	Slide 49: C++ strings (1)
	Slide 50: C++ strings (2)
	Slide 51: C++ strings (3)
	Slide 52: C++ strings (4)
	Slide 53: C++ strings (5)
	Slide 54: C++ strings (6)
	Slide 55: C++ strings (7)
	Slide 56: C++ strings (8)
	Slide 57: C++ strings (9)
	Slide 58: String streams (1)
	Slide 59: String streams (2)

